We teach our students to solve problems creatively and take an innovative approach to the development and application of engineering technology.

AT A GLANCE

- Opportunity to study abroad at one of many partner universities worldwide.
- Training in emerging areas such as renewable energy, nano-materials, biodegradable structures, solid state lighting, designs of low-carbon products and bio-mimic robots.

RANKING AND RECOGNITION

- **#24** for Chemical Engineering
- **#25** for Civil and Structural Engineering
- **#49** for Mechanical Engineering
- **Top 100** for Electrical Engineering

Tier 5

The School of Engineering is rated Excellent in D-Setara Engineering by the Ministry of Education

Programs offered at the School of Engineering are recognised by the following organisations:

- Tertiary Education Quality and Standards Agency (TEQSA), Australia
- Malaysian Qualifications Agency (MQA)
- Public Services Department of Malaysia (JPA)
- Engineering Accreditation Council Malaysia (EAC)
- Engineers Australia Accreditation Board

Accreditation by Engineers Australia

- Bachelor of Chemical Engineering (Honours)
- Bachelor of Electrical and Computer Systems Engineering (Honours)
- Bachelor of Mechanical Engineering (Honours)
- Bachelor of Mechatronics Engineering (Honours)
- Bachelor of Civil Engineering (Honours)*

*provisional accreditation
BACHELOR OF ENGINEERING (HONOURS)

COURSE STRUCTURE
You must complete five core units, one general studies unit and two electives in level one. The elective units help to expose students to one or more disciplines in level one.

AREAS OF STUDY
LEVEL ONE
Core Units
• Computing for engineers
• Engineering mathematics
• Engineering design: lighter, faster, stronger
• Engineering design: cleaner, safer, smarter
• Engineering mobile applications

GENERAL STUDIES UNIT
• Leadership and Innovation
Elective Units
Select two units from:
• Chemistry 1 advanced
• Physics for engineering
• Mechanics of fluids
• Digital systems
• Introduction to systems engineering
• Spatial communication in engineering
• Computer organisation and programming
• Introduction to computer science
• Discrete mathematics for computer sciences
• Introduction to algorithms and programming
Total: 48 points

The Bachelor of Engineering (Honours) offers you the chance to experience a range of engineering disciplines in your first year before deciding on a specialisation.

The common first year of the course also focuses on the role of the engineer in the future. In subsequent years, you can pursue studies in one of the following engineering disciplines: Chemical Engineering, Civil Engineering, Electrical and Computer Systems Engineering, Mechanical Engineering, Mechatronics Engineering or Software Engineering.
Application of knowledge in Chemical Engineering is essential for successful scale-up and smooth operation of processes, which leads to the production of value-added items such as petrochemicals, toothpaste, mobile phones, petrol, paper, instant coffee and etc. In addition, Chemical Engineers have great responsibility to produce design of processes that are both inherently and extrinsically safe to prevent major incidents. In level two units, you will gain necessary background in the sciences and engineering fundamentals, covering topics such as mass transfer, heat transfer, thermodynamics etc. When you proceed to higher levels, you will be exposed to core topics in Chemical Engineering such as separation processes, reaction engineering and many others.

Practical work forms an essential part of many units and management studies are introduced at higher levels (level 3 and 4) to provide you with adequate knowledge to manage projects. You are given the opportunity to integrate a period of industrial experience or time at an overseas university with your studies.

REQUIREMENTS

Upon entry to Chemical Engineering, you will have to complete 108 points of core Chemical Engineering units and 36 points of electives to complete the course. More information on units offered in levels 2-4 are listed below:

LEVEL TWO

Core Units
You must complete the following six core units:
- Mechanics of fluids
- Material and energy balances
- Heat and mass transfer
- Thermodynamics I
- Chemistry I advanced
- Advanced engineering mathematics

Elective Units
Recommended elective units:
Select any two of the units below for which you meet prerequisites. Please refer to the course map for unit recommendations.
- Process material selection
- Bioprocess technology
- Nanotechnology and materials 1
- Introduction to process simulation
- Biochemistry for engineers

Total: 48 points

LEVEL THREE

Core Units
You must complete the following six core units:
- Chemistry and chemical thermodynamics
- Process control
- Reaction engineering
- Separation processes
- Process design
- Transport phenomena and numerical methods

Elective Units
Recommended elective units:
Select any two of the units below for which you meet prerequisites. Please refer to the course map for unit recommendations.
- Environmental impact assessment and management
- Sustainable processing 1
- Bioprocess technology
- Biochemical engineering
- Nanotechnology and materials 1
- Nanotechnology and materials 2

Total: 48 points

LEVEL FOUR

Core Units
You must complete the following four core units:
- Engineer in society
- Particle technology
- Design project (12 Points)
- Chemical engineering project (12 Points)

Elective Units
Recommended elective units:
Select any two of the units below for which you meet prerequisites. Please refer to the course map for unit recommendations.
- Sustainable processing 2
- Biochemical engineering
- Nanotechnology and materials 2
- Principles and practices of sustainable development*
- Engineering entrepreneurship*

*You must obtain a HWA of 70% or above and in your final year to enroll in these units.

Total: 48 points

RECOMMENDATION

If you wish to enter the Chemical Engineering (CHE) discipline, it is recommended that you complete Chemistry I advanced and Mechanics of fluid units at level one.
Civil engineering encompasses four major fields of activity: structural engineering, water resources engineering, transport engineering and geotechnical engineering. Civil engineers are responsible for the basic needs and facilities (or infrastructure) of modern society. They work for government bodies and for private employers as consulting engineers and engineering contractors specialising in areas such as structural design, water engineering, geotechnics, transportation and construction management.

The intention of level two is to develop ‘sub-professional’ skills, ie the ability to design common place engineering artefacts in the context of suitable theoretical treatment. At the same time, you will gain some appreciation for the breadth of civil engineering. Theory is developed in parallel with the applications (problems). Theoretical insights are further developed at levels three and four, as more complex scenarios are considered.

Level three is designed to develop “core professional” skills. It includes topics on structure, water, and geomechanics. The water and geomechanics groups share another unit in groundwater field as well.

Level four is seen as a period of specialisation. In this course structure, you will take 6 core units (6 points each) in each year and another two Civil Engineering electives in each year. One out of the 6 elective units (6 points only) may be taken anywhere within the university (including Civil Engineering department), as long as the units do not substantially duplicate a unit already studied. Some of the elective units are multidisciplinary.
The first three levels of the course provide a broad foundation in Electrical and Computer Systems Engineering and in sciences such as physics, chemistry and mathematics. At levels three and four, students complete core units and a management unit and are able to choose from a large number of electives which build upon material studied at earlier levels. Electives comprise approximately 37 per cent of levels three and four.

The design and thesis projects at level three and four build self-reliance and planning capabilities in both individual and team-based environments. Projects are often related closely to the department’s exceptionally strong research and collaborative industry programs within its research centres.

LEVEL TWO
- Signals and systems
- Probability models in engineering
- Electrical circuits
- Computer organisation and programming
- Digital systems
- Advanced engineering mathematics
- 12 points of electives from the Electrical and Computer Systems Engineering (ECSE) elective list

Total: 48 points

LEVEL THREE
- Engineering design
- Analogue electronics
- Control system design
- Information and networks
- Computer systems
- Engineering electromagnetics
- 12 points of electives from the Electrical and Computer Systems Engineering (ECSE) elective list

Total: 48 points

LEVEL FOUR
Core Units
- Project A
- Project B
- Professional practice
- Electrical energy systems

Select the two units not already taken from:
- 24 points of electives from the Electrical and Computer Systems Engineering (ECSE) elective list

Total: 48 points

Elective Units
The list of elective choices below will be taught in any year, and many will be offered only in alternate years. One of the elective units may, with the written permission of the Discipline Head, be a unit chosen from elsewhere in the University, provided the unit does not substantially duplicate material already studied.
- Optical communications
- Computer vision and robotics
- Communications systems
- Advanced control
- Advanced electromagnetics
- Electrical energy – generation and supply
- Organic electronics and microdevices
- Solid state lighting / Energy efficient lighting
- Medical imaging technology
- Smart grid

RECOMMENDATION
If you wish to enter the Electrical and Computer Systems Engineering (ECSE) discipline, it is recommended that you complete Computer organisation or Digital systems units at level one.
When specialisation in the field of mechanical engineering begins at level two of the program, it focuses on engineering practice and the engineering sciences. At level three, engineering science and practice studies are extended to a professional level and students are encouraged to learn independently by utilising learning resources available to them.

At level four, you will undertake an independent full-year engineering project in an area of personal interest. The results of this project are presented orally and examined by thesis. The two engineering elective units at each level offers you the scope for specialisation.

LEVEL TWO
- Advanced engineering mathematics
- Dynamics I
- Engineering design I
- Mechanics of materials
- Mechanics of fluids
- Thermodynamics

Elective Units
- Electromechanics
- Electrical circuits

Total: 48 points

LEVEL THREE
- Fluid mechanics II
- Engineering design II
- Dynamics II
- Engineering computational analysis
- Solid mechanics
- Systems and control

Elective Units
- Material selection for engineering design
- Experimental project

Total: 48 points

LEVEL FOUR
Core Units
- Project I
- Project II
- Professional practice
- Engineering design III
- Thermodynamics and heat transfer
- Computer aided design

Elective Units
Select two units from:
- Non-destructive testing and inspection
- Sustainable engineering and design with nanomaterials
- Refrigeration and air conditioning
- Control systems
- Internal combustion engine
- Robotics
- Industrial noise and control
- Momentum, energy & mass transport in engineering systems

RECOMMENDATION
If you wish to enter the Mechanical Engineering (MEC) discipline, it is recommended that you complete Mechanics of fluids unit at level one.

Note: Approval must be sought from the Discipline Head in Mechanical Engineering to take any unit not listed above.
BACHELOR OF MECHATRONICS ENGINEERING (HONOURS)

DURATION
4 years

INTAKES
February, July and October

At level two, units provide fundamental knowledge across the wide range of disciplines that form the basis of Mechatronics Engineering. Electronics, mechanics, programming and digital electronics are some of the topics covered at level two. At level three, further knowledge is built on these fundamentals of Mechatronics Engineering to a professional level. These specialised areas include thermodynamics, fluid mechanics, sensors, control, and electrical energy systems.

At level four, you will undertake units that draw together a wide range of fundamental knowledge in a mechatronics context such as robotics and manufacturing. This level allows for specialisation in wider areas of mechatronics through the selection of three elective units. You will have the opportunity to study a unit from another faculty as one of your electives and to undertake a substantial independent investigation in a chosen area.

There is a strong emphasis on project work throughout the Mechatronics Engineering course. As with project units at the second, third and fourth level, many other units contain a strong project/design element.

LEVEL TWO
- Advanced engineering mathematics
- Engineering design I
- Mechanics
- Computer organisation and programming
- Electrical circuits
- Introduction to systems engineering
- Two elective units
Total: 48 points

LEVEL THREE
- Mechatronics project II
- Dynamical systems
- Sensors and artificial perception
- Modelling and control
- Thermo-fluids and power systems
- Analogue electronics
- Two elective units
Total: 48 points

LEVEL FOUR
- Mechatronics final year project I
- Mechatronics final year project II
- Robotics
- Professional practice
- Mechatronics and manufacturing
- Control systems
- Two elective units
Total: 48 points

LIST OF ELECTIVES
Select six units from:
- Electrical energy generation and transmission
- Computer vision
- Organic electronics and micro devices
- Industrial noise control
- Non-destructive testing and inspection
- Refrigeration and air conditioning
- Momentum, energy and mass transport in engineering systems
- Advanced dynamics
- Information and networks
- Signal processing
- Material selection for engineering design
- Engineering design 2
- Computer-aided design
- Micro-nano solid and fluid mechanics

RECOMMENDATION
If you wish to enter the Mechatronics Engineering (TRC) discipline, it is recommended that you complete Introduction to systems engineering and Digital systems units at level one.
BACHELOR OF
SOFTWARE ENGINEERING
(HONOURS)

LEVEL TWO

Level two and three units are designed to develop the core theoretical and professional skills a software engineer should possess.

- Introduction to computer science
- Discrete mathematics for computer science
- Object-oriented analysis, design and implementation
- Software engineering process and management
- Algorithms and data structures
- Software quality and testing

ELECTIVE UNITS

Select any two (2) units from the list below or from another school.

- System development
- Project management
- Operating systems
- Web database interface
- Data visualisation
- Mobile application development
- Databases
- Data modelling

Total: 48 points

LEVEL THREE

- Computer architecture
- Software engineering: architecture and design
- Software engineering practice (equivalent to 12 credit points)
- Operating systems
- Databases

ELECTIVE UNITS

Select any two (2) level 3 elective units offered by the School of IT (from the list below) or other Schools.

- Business intelligence and data warehousing
- Usability
- Intelligent systems
- Data analytics
- Information & network security
- Parallel computing

Total: 48 points

LEVEL FOUR

Level four is considered as a period of specialization. You must take both software engineering studio and research projects, each worth 12 credit points along with the other core unit and 3 more elective units including at least one software engineering technical elective offered by the School of IT.

- Software engineering research project (12 credit points)
- Software engineering industry experience studio project (12 credit points)
- Computer networks

SOFTWARE ENGINEERING TECHNICAL ELECTIVE

Select any unit from the pool of software engineering approved electives offered by the School of IT. Another 2 units - either from the School of IT or any other school - have to be completed during the fourth year.

Total: 48 points

RECOMMENDATION

If you wish to enter the Software Engineering discipline, it is recommended that you complete Introduction to computer science unit at level one.
CAREER OPPORTUNITIES FOR ALL ENGINEERING GRADUATES

- Biotechnology
- Building and construction
- Computer programming
- Food processing
- Industrial electronics
- Manufacturing
- Mining
- Nanotechnology
- Power generation
- Robotics
- Sustainable technologies
- Telecommunications
- Transport

PROFESSIONAL ATTACHMENT

As an engineering student at Monash University Malaysia, you must undergo your industrial training in an industry-based environment after your third year of studies as required by EAC, Board of Engineers Malaysia. The duration of the training is 12 weeks and you must submit a written report detailing the work experience. Companies like British Telecommunications plc, Carrier (M) Sdn Bhd, ExxonMobil Exploration and Production Malaysia Inc., F&N Coca-Cola (Malaysia) Sdn Bhd, Freescale Semiconductor Malaysia Sdn Bhd, Goodyear Malaysia Berhad, Hicom Automotive Manufacturer (M) Sdn Bhd, Malaysia Airlines, IBM (M) Sdn Bhd and Shell Refining Company (Federation of Malaya) Berhad have all provided internship opportunities for our Engineering students. A list of internship providers is available on the noticeboard for your reference. A recommendation letter from the School of Engineering is also provided upon your request.

In preparation of the industrial training, you are strongly encouraged to:

- Download a copy of Industrial Training Guidelines from Moodle
- Attend the Industrial Training Briefing, specially conducted for engineering students in August each year
- Consult the respective Industrial Training Advisors in your individual discipline should there be any queries.
MASTER OF ADVANCED ENGINEERING (ENERGY AND SUSTAINABILITY)

AREA OF STUDY
You will acquire an advanced understanding in energy and sustainability and the ability to develop solutions to complex engineering problems. You will study core units in engineering leadership and engineering analysis to strengthen your abilities in critical reasoning, innovation and strategic thinking.

- Apply advanced energy and sustainability based knowledge in an engineering context
- Employ energy and sustainability based techniques to solve complex problems, design engineering solutions, and evaluate potential designs to identify optimal solutions
- Research, investigate and critically appraise current developments and research directions, and identify future directions for energy and sustainability
- Demonstrate a commitment to uphold code of ethics and established norms of professional engineering conduct
- Communicate information effectively to industry and wider community
- Demonstrate knowledge of team dynamics and leadership, and function effectively as an individual and in diverse engineering teams

RESEARCH OPTION
This program offers a research pathway option as an alternative route for you to progress from a coursework master’s program into a PhD program. The research option requires the recommendation of the Associate Head of School (Graduate Research) and approval from the Faculty / Monash Graduate Education (MGE).
This degree is intended to provide you with basic training in the methodology of research and allow you to gain an in-depth insight into an important topic of current engineering interest. In this course, you will undertake a research project in one of the areas of specialisation.

For successful completion, you are required to submit a thesis on your work, which the examiners should find to have demonstrated the your mastery in the research area.

AREAS OF STUDY
- Advanced materials
- Artificial intelligence
- Advanced computing and simulation
- Bioprocess engineering
- Bioinspired systems
- Biomechanics
- Critical infrastructure
- Energy
- Engineering in medical and healthcare
- Environmental engineering
- Future wireless access technologies
- Intelligent lighting
- Management of natural resources and phenomena
- Monitoring and surveillance
- Nanotechnology
- Nanoelectronics
- Optical communications and photonics
- Process control
- Process integration and optimisation
- Water and flood management
- Waste management

DURATION
- 2 Years (Full-time)
- 4 Years (Part-time)*

INTAKES
- Throughout the year
- Subject to availability of supervision

*Part-time studies not available for international students

COURSE STRUCTURE
This course consists of research and thesis components.

OUTCOMES
On completion of this course, you should gain an in-depth insight into an important topic of current engineering interest and able to demonstrate a thorough understanding of relevant research techniques in your field, through a review of literature and application of research techniques relevant to your chosen field of study.
Research students are admitted to probationary candidature for Master of Engineering Science (Research) in the first year. They may choose to complete their study in Master of Engineering Science (Research) or transfer their candidature to PhD degree at the end of the probationary period. Research students with outstanding academic track record and research experience can be admitted directly into a PhD program.

OBJECTIVES

This degree is intended to provide students with advance-level research training. Students will demonstrate a thorough understanding of relevant research techniques in their field through a review of the relevant literature. They will also demonstrate their ability to:

• Identify and define good research questions
• Apply an appropriate research method to address the research questions
• Demonstrate mastery of their chosen research methodology and knowledge in the relevant discipline
• Communicate the research findings in a format appropriate to their academic discipline
• Write and produce their research into a high quality document containing all the required components of a PhD thesis
• Make an original contribution to their field of study

Every research student will be academically supported by at least two supervisors. Successful completion of the program will signify that you have completed a course of postgraduate training in research under proper academic supervision, have demonstrated the capacity to carry out independent research and made a significant contribution to knowledge.

AREAS OF RESEARCH

• Advanced materials
• Artificial intelligence
• Advanced computing and simulation
• Bioprocess engineering
• Bioinspired systems
• Biomechanics
• Critical infrastructure
• Energy
• Engineering in medical and healthcare
• Environmental engineering
• Future wireless access technologies
• Intelligent lighting
• Management of natural resources and phenomena
• Monitoring and surveillance
• Nanotechnology
• Nanoelectronics
• Optical communications and photonics
• Process control
• Process integration and optimisation
• Water and flood management
• Waste management

DURATION

4 Years (Full-time)
8 Years (Part-time)*

INTAKES
Throughout the year
Subject to availability of supervision

*Part-time studies not available for international students

DOCTOR OF PHILOSOPHY

POSTGRADUATE COURSES
This degree is intended to provide you with basic training in the methodology of research and allow you to gain an in-depth insight into an important topic of current engineering interest. In this course, you will undertake a research project in one of the areas of specialisation.

For successful completion, you are required to submit a thesis on your work, which the examiners should find to have demonstrated your mastery in the research area.

AREAS OF STUDY
- Advanced materials
- Artificial intelligence
- Advanced computing and simulation
- Bioprocess engineering
- Bioinspired systems
- Biomechanics
- Critical infrastructure
- Energy
- Engineering in medical and healthcare
- Environmental engineering
- Future wireless access technologies
- Intelligent lighting
- Management of natural resources and phenomena
- Monitoring and surveillance
- Nanotechnology
- Nanoelectronics
- Optical communications and photonics
- Process control
- Process integration and optimisation
- Water and flood management
- Waste management

COURSE STRUCTURE
This course consists of research and thesis components.

OUTCOMES
On completion of this course, you should gain an in-depth insight into an important topic of current engineering interest and able to demonstrate a thorough understanding of relevant research techniques in your field, through a review of literature and application of research techniques relevant to your chosen field of study.

ENHANCED LEARNING

ENGINEERING AND IT LEADERSHIP PROGRAM (EILP)
The School of Engineering together with the School of IT, Monash University Malaysia, has designed a challenging and engaging program for high performing undergraduate Engineering and IT students to ensure they have leadership and employability skills to accompany their world-class degree studies. Students, who are selected for this program, will be groomed to be engineering leaders of the future.

This one-year program will stimulate and inspire these future leaders, taking them out of their comfort zone while providing a supportive learning environment. They will develop skills which will serve them well beyond the transition from student to engineering professional.

The program includes a retreat, a series of expert-led workshops, field trips to companies, industry leadership engagement evenings and culminates in a participant-organised leadership summit.

Significant monetary and in-kind contributions from industry make this program possible.

EXTERNAL DESIGN COMPETITION
The School supports students to participate in external design competitions. For example, in 2016, the School supported students to participate in Shell Eco Marathon Asia, Malaysia CHEM-E-Car, Students Ace Green Competition, Greentech Youth Innovation Challenge and Warman Student Design and Build competitions.
MENTORING

BUDDY-BUDDEE

Buddy-Buddee is a voluntary peer mentoring programme for engineering students. A Buddy is a current engineering student mentor and a Buddee is a new first year student mentee. A Buddy provides support, guidance and advice to Buddees to help them adjust to academic and social life.

MENTOR-MENTEE

Mentor-mentee matches a School of Engineering academic with a student requiring expert assistance in coping with the rigours of engineering study.

Usually students will be guided by the Heads of Discipline to seek help through this mentor-mentee program. Students can also seek help on their own through specified mentor-mentee coordinators.

PEER ASSISTED STUDY SESSIONS (PASS)

Peer Assisted Study Sessions (PASS) is a voluntary assistance program to help students to succeed in difficult units. PASS sessions are different from tutorials – they are more student-oriented.

Identified postgraduate and/or undergraduate students are appointed as PASS leaders to help in these sessions. Academics and/or postgraduate students act as PASS coordinators to oversee the implementation of this program for each unit.

UNDERGRADUATE RESEARCH OPPORTUNITIES PROGRAM (UROP)

UROP provides undergraduate engineering students an early opportunity to experience a genuine research environment, working either with a supervisor and/or a research group. Students will acquire knowledge and skills to enable them to undertake independent research skills and prepare them for Final Year Project and/or Higher Degree by Research studies.

INDUSTRY ENGAGEMENT

The School of Engineering engages with industry in various ways. Each discipline in the School has its own industry advisory panel to provide high level input on engineering education in Malaysia, and particularly emerging and anticipated industry needs.

The School’s Engineering and IT Leadership Program (EILP) receives considerable support from industries in terms of sponsorship, facilitators and mentors. Many final year and research projects are conducted in collaboration with our industry partners.

In addition to that, industry leaders contribute through career talks, guest lectures and industry-based seminars. Students undertaking engineering programs are required to undergo a compulsory industrial training. Many collaborations have also been established in this context.
Engineers Without Borders is a non-profit organisation that aims to harness the knowledge and skills of engineering students and professionals to help underprivileged communities through the development of simple, sustainable solutions. EWB-MUM is a student chapter supported by Engineers Without Borders Malaysia and the Monash University Malaysia School of Engineering.

This student chapter serves as a platform for students to apply their theoretical knowledge in engineering to help the wider community. Students who join the EWB-MUM activities develop skills such as leadership, teamwork, time management and project management. Students will also have the opportunity to engage professionals in the industry.

Some of EWB-MUM’s activities included:

- Hosting a life skills workshop for refugee students from the Fugee School, including demonstrating the use of simple water filtration system and simple flashlight fabrication
- Fundraising and install a micro-hydrogenerator for a school in Budok Aru, Sarawak, in collaboration with LightUp Borneo
- Organising a bridge-building competition using newspapers, for refugee students from IDEAS Academy
- Constructing a wood workshop for a shelter home under the Project PLC (Positive Living Community)
- Re-constructing a storage room and multi purpose hall (second phase of the PLC workshop)
- Repainting of walls, redoing pipings and laundry area for the Zomi School for Myanmar refugees, in collaboration with the Voice of Refugees
CONTACT US

Business hours:
Monday to Friday 8.30am – 6.00pm

Counselling hours for course enquiries:
Monday to Friday 8.30am – 6.00pm

Closed on weekends and public holidays.

Enquiries
T +60 3 5514 6000
F +60 3 5514 6001
E mum.info@monash.edu

Address
Monash University Malaysia
Jalan Lagoon Selatan
47500 Bandar Sunway
Selangor Darul Ehsan
Malaysia

monash.edu.my

Monash University Malaysia is a joint venture

Jeffrey Cheah Foundation
MONASH University

DULNE023(C) Co. No. 458551-U
(Date of establishment: 20 March 2000)

The information in this Prospectus is correct at the
time of publication. Monash University Malaysia
reserves the right to change the information in line
with updates, from time to time.
Please check the website(www.monash.edu.my)
for the latest information.

Produced by Marketing and Future Students,
Monash University Malaysia
Copyright © 2016 Monash University Malaysia

December 2016